ãå®å šçãLLMãã¡ã€ã³ãã¥ãŒãã³ã°ã®æ¹æ³ãšæŽ»çšæ³5éž
LLMïŒå€§èŠæš¡èšèªã¢ãã«ïŒã®ãã¡ã€ã³ãã¥ãŒãã³ã°ã¯ãç¹å®ã®ã¿ã¹ã¯ããã¡ã€ã³ã«ã¢ãã«ãé©å¿ãããããã®éèŠãªææ³ã§ãã
äºåã«åŠç¿ããã¢ãã«ãããã«ç¹åããã粟床ãåå¿é床ãåäžãããããšãå¯èœã§ãã
æ¬èšäºã§ã¯ãLLMãã¡ã€ã³ãã¥ãŒãã³ã°ã®åºæ¬çãªæŠå¿µãããå®éã®ææ³ã掻çšäŸãã³ã¹ãæé©åã®æ¹æ³ãŸã§ã詳现ã«è§£èª¬ããŠãããŸãã
ãŸããåŒç€Ÿã§ã¯ãããã³ãŒãŒãGAFAåºèº«ã®AIãšãã¹ããŒããAIå°å
¥ã«é¢ããç¡æçžè«ãæ¿ã£ãŠãããŸãã
ç¡æçžè«ã¯å
ç20瀟æ§éå®ã§ã貎瀟ã®AI掻çšäœå°åæã¬ããŒãããç¡åã§ãæäŸãããã£ã³ããŒã³ã宿œäžã§ãã
ãèå³ããæã¡ã®æ¹ã¯ã以äžã®ãªã³ã¯ãããé£çµ¡ãã ãã:
AIå°å
¥ã«é¢ããç¡æçžè«ã¯ãã¡ã
è³æè«æ±ã¯ãã¡ã

AIå°å ¥.comãæäŸããæ ªåŒäŒç€ŸFirstShift 代衚åç· åœ¹ãããã³ã倧åŠã³ã³ãã¥ãŒã¿ãŒãµã€ãšã³ã¹åŠç§åæ¥ãæ ªåŒäŒç€ŸANIFTYã嵿¥åŸãäžçåã®ãããã¯ãã§ãŒã³ãµãŒãã¹ãéçºããæ±èšŒãã©ã€ã äžå ŽäŒæ¥ã«å£²åŽããã®åŸããããã³ãŒãŒã»ã¢ã³ãã»ã«ã³ãããŒã«ã³ã³ãµã«ã¿ã³ããšããŠå ¥ç€Ÿããããã³ãŒãŒæ¥æ¬ãªãã£ã¹åã®çæAIãããžã§ã¯ãã«åŸäºåŸãæ ªåŒäŒç€ŸFirstShiftã嵿¥ã
LLMãã¡ã€ã³ãã¥ãŒãã³ã°ãšã¯
LLMãã¡ã€ã³ãã¥ãŒãã³ã°ã¯ãäºååŠç¿æžã¿ã®å€§èŠæš¡èšèªã¢ãã«ãç¹å®ã®ã¿ã¹ã¯ãé åã«ç¹åããŠåŠç¿ãããããã»ã¹ã§ãã
ãã®ããã»ã¹ã«ãã£ãŠãã¢ãã«ã¯äžè¬çãªç¥èããããå°éçãªç¥èã«å¯Ÿå¿ããã¿ã¹ã¯ã«ç¹åãã粟床ãšåå¿é床ãåäžãããŸãã
LLMãã¡ã€ã³ãã¥ãŒãã³ã°ã§ã¯ããæç« çæã»è³ªåå¿çã»ææ åæããªã©ã®ç¹å®ã®çšéã«æé©åãããŸãã
LLMãã¡ã€ã³ãã¥ãŒãã³ã°ãšRAGã®éã
LLMãã¡ã€ã³ãã¥ãŒãã³ã°ã¯ãäºååŠç¿ããã¢ãã«ã®ãã©ã¡ãŒã¿ã調æŽããŠãç¹å®ã®ã¿ã¹ã¯ã«æé©åããæ¹æ³ã§ãã
ãã®ã¢ãã«ã¯ãç¹å®ã®ãã¡ã€ã³ãã¿ã¹ã¯ã«ãããŠé«ãããã©ãŒãã³ã¹ãçºæ®ããŸãã
å¯Ÿç §çã«ãRAGïŒRetrieval-Augmented GenerationïŒã¯å€éšã®ããŒã¿ããŒã¹ããæ å ±ãååŸããŠçæããã»ã¹ã«çµã¿èŸŒãããšã§ãåžžã«ææ°ã®æ å ±ãé«åºŠãªå°éç¥èãæŽ»çšããææ³ã§ãã
ãã¡ã€ã³ãã¥ãŒãã³ã°ã¯ã¢ãã«ã®ãèšæ¶ããç¹å®ã¿ã¹ã¯ã«ç¹åãããã®ã«å¯ŸããRAGã¯å€éšã®ãªãœãŒã¹ãåçã«å©çšããŸãã
ãç¥èç·šãLLMãã¡ã€ã³ãã¥ãŒãã³ã°ã®çš®é¡
LLMãã¡ã€ã³ãã¥ãŒãã³ã°ã«ã¯ããã€ãã®ã¢ãããŒãããããŸãã
ç®çã䜿çšãããªãœãŒã¹ã«ãã£ãŠæé©ãªæ¹æ³ãç°ãªããããããããã®ææ³ã®ç¹åŸŽãçè§£ããããšãéèŠã§ãã
次ã«ã代衚çãª2ã€ã®ãã¡ã€ã³ãã¥ãŒãã³ã°æ¹æ³ã«ã€ããŠèª¬æããŸãã
ãã«ãã¡ã€ã³ãã¥ãŒãã³ã°
ã¢ãã«ã®å šãã©ã¡ãŒã¿ãæŽæ°ããŠãç¹å®ã®ããŒã¿ã»ãããã¿ã¹ã¯ã«æ·±ãé©å¿ãããææ³ã§ãã
ãã®æ¹æ³ã¯éåžžã«é«ãé©å¿æ§ãèªãäžæ¹ã§ãå€ãã®èšç®è³æºãšæéãå¿ èŠã§ãã
äž»ã«å€§èŠæš¡ãªç¿»èš³ã·ã¹ãã ãç¹å®ã®å°éé åã«ããã質åå¿çã·ã¹ãã ãªã©ãé«ãããã©ãŒãã³ã¹ãèŠæ±ãããã¢ããªã±ãŒã·ã§ã³ã®äœ¿çšã«é©çšãããŸãã
ç¹ã«ãç¹å®èšèªãã¢ã®ç¿»èš³ã»å»çã»æ³åŸãªã©ã®å°éåéã§é«ç²ŸåºŠãªåçãæäŸããããã«ãã«ãã¡ã€ã³ãã¥ãŒãã³ã°ãæœãããŸãã
軜éãã¡ã€ã³ãã¥ãŒãã³ã°
ã¢ãã«ã®äžéšã®ãã©ã¡ãŒã¿ã®ã¿ãæŽæ°ããå šäœã®ãã©ã¡ãŒã¿æ§é ãç¶æãã€ã€å¹ççã«ã¿ã¹ã¯ç¹åããææ³ã§ãã
èšç®è³æºã®å¶éãããç°å¢ã§ãå¹ççã«ã¢ãã«ãé©å¿ãããããšãå¯èœã§ãå°èŠæš¡ã¢ããªã±ãŒã·ã§ã³ãã¢ãã€ã«ããã€ã¹ã§ã®äœ¿çšããªã¢ã«ã¿ã€ã å¿çãæ±ãããããŠã§ãã¢ããªã±ãŒã·ã§ã³ã«å©çšãããŸãã
軜éãã¡ã€ã³ãã¥ãŒãã³ã°ã¯LoRAãQLoRAãšãã£ãæè¡ã掻çšããããšã§ãéãããèšç®è³æºã§ãå¹ççã«ã¢ãã«ãé©å¿ãããããšãã§ããŸãã
- LoRAïŒLow-Rank AdaptationïŒïŒã¢ãã«ã®ãã©ã¡ãŒã¿ãäœã©ã³ã¯ã®è¡åã§å¹ççã«èª¿æŽããèšç®è² è·ãå€§å¹ ã«äœæžãã驿°çãªææ³ã
- QLoRAïŒQuantized LoRAïŒïŒéååãšLoRAãçµã¿åããã2025幎çŸåšæã泚ç®ãããææ³ã§ã16GBã®GPUã§70åãã©ã¡ãŒã¿ã¢ãã«ã®ãã¡ã€ã³ãã¥ãŒãã³ã°ãå¯èœã
- DoRAïŒWeight-Decomposed Low-Rank AdaptationïŒïŒLoRAãããã«æ¹è¯ããæ°æè¡ã§ãããé«ç²ŸåºŠãªãã¡ã€ã³ãã¥ãŒãã³ã°ãå®çŸã
ãå®è·µç·šãLLMãã¡ã€ã³ãã¥ãŒãã³ã°ã®ããæ¹
LLMãã¡ã€ã³ãã¥ãŒãã³ã°ã¯å®è·µçãªææ³ãæ±ããããŸãã
以äžã§ã¯ããã¡ã€ã³ãã¥ãŒãã³ã°ã®å®éã®ã¹ããããå ·äœçã«è§£èª¬ããŸãã
STEP 1ïœç°å¢ã»ããŒã«ã®æºå
LLMãã¡ã€ã³ãã¥ãŒãã³ã°ãéå§ããåã«ã¯ãé©åãªéçºç°å¢ãšããŒã«ãæŽããå¿ èŠããããŸãã
2025幎çŸåšã§ã¯ãHugging Face TransformersãTRLïŒTransformer Reinforcement LearningïŒãšãã£ãå°çšã©ã€ãã©ãªãæšæºçã«äœ¿çšãããŠããŸãã
- Hugging Face TransformersïŒäºååŠç¿æžã¿ã¢ãã«ã®èªã¿èŸŒã¿ãšãã¡ã€ã³ãã¥ãŒãã³ã°ãç°¡åã«å®è¡ã§ããå æ¬çãªã©ã€ãã©ãªã
- TRLïŒTransformer Reinforcement LearningïŒïŒLoRAãQLoRAã«ããå¹ççãªãã¡ã€ã³ãã¥ãŒãã³ã°ãæ¯æŽããææ°ããŒã«ã
- PEFTïŒParameter-Efficient Fine-TuningïŒïŒè»œéãã¡ã€ã³ãã¥ãŒãã³ã°ææ³ãçµ±åçã«æäŸããã©ã€ãã©ãªã
- bitsandbytesïŒéååã«ããã¡ã¢ãªå¹çåãå®çŸããå¿ é ã©ã€ãã©ãªã
- GPU/ã¯ã©ãŠãç°å¢ïŒGoogle Colab ProãAWS SageMakerãAzure Machine Learningãªã©ã®ã¯ã©ãŠããã©ãããã©ãŒã ãæšå¥šã
STEP 2ïœã¢ãã«éžå®ã»ããŒã¿ã»ããæºå
ç¹å®ã®ã¿ã¹ã¯ã«æé©ãªã¢ãã«ïŒããã¹ãçæã»ç»ååé¡ã»é³å£°èªèãªã©ãçšéã«å¿ããé©åãªã¢ãã«ïŒãéžæãããã®ç®çã«é©ããããŒã¿ã»ãããçšæããããšãéèŠã§ãã
ããŒã¿ã»ããã®æºåã«ã¯ãããŒã¿ã®ååŠçãšã¢ãããŒã·ã§ã³ãããã»ã¹ã®éèŠãšãªããŸãã
- ããŒã¿ã®ååŠçïŒããŒã¿ã«å«ãŸãããã€ãºãç¡é§ãªæ å ±ãåãé€ããããã¢ãã«ãçè§£ãããã圢åŒã«æŽããäœæ¥ã§ãã
- ã¢ãããŒã·ã§ã³ïŒããŒã¿ã«ã©ãã«ãä»ããäœæ¥ã§ãããã®æç« ã¯ããžãã£ãããã¬ãã£ããããšããã©ãã«ãä»ããããšã§ãã
ãã®ããã»ã¹ããã£ããè¡ãããšã§ãã¢ãã«ã®åŠç¿å¹æãé«ãŸããŸãã
STEP 3ïœãã¡ã€ã³ãã¥ãŒãã³ã°ã®å®è¡
éžå®ããã¢ãã«ãšããŒã¿ã»ãããçšããŠããã¡ã€ã³ãã¥ãŒãã³ã°ãå®è¡ããŸãã
ãã€ããŒãã©ã¡ãŒã¿ã®èª¿æŽããéåŠç¿ãé²ãããã®å·¥å€«ãæ±ããããŸãã
- ãã€ããŒãã©ã¡ãŒã¿ã®èª¿æŽïŒåŠç¿çïŒ1e-4ã5e-4æšå¥šïŒã»LoRAã©ã³ã¯ïŒ8ã64ïŒã»ãšããã¯æ°ïŒ3ã5æšå¥šïŒãç¹ã«éèŠã§ãQLoRAã§ã¯éååã¬ãã«ãèæ ®ããå¿ èŠããããŸãã
- éåŠç¿ã®é²æ¢ïŒGradient CheckpointingãMixed Precision TrainingãæŽ»çšããããªããŒã·ã§ã³æå€±ã®ç£èŠã«ããæ©æåæ¢ãå®è£ ããŸããç¹ã«å°èŠæš¡ããŒã¿ã»ããã§ã¯ããŒã¿æ¡åŒµæè¡ã广çã§ãã
- å¹ççãªåŠç¿ã¹ã±ãžã¥ãŒãªã³ã°ïŒCosine AnnealingãWarm-upã¹ã±ãžã¥ãŒã©ãŒã䜿çšããããšã§ãããå®å®ããåŠç¿ãå®çŸã§ããŸãã
STEP 4ïœã¢ãã¿ãªã³ã°ãšæ¹å
ãã¬ãŒãã³ã°äžã®ã¢ãã«ã®æ§èœãã¢ãã¿ãªã³ã°ããå¿ èŠã«å¿ããŠæ¹åãè¡ããŸãã
è©äŸ¡ææšãçšããŠã¢ãã«ã®å¹æã枬å®ããæé©åãå³ããŸãã
ã¢ãã¿ãªã³ã°ãšæ¹åãè¡ãããã®äž»èŠãªæŽ»åã詳ããèŠãŠãããŸãããã
ããã©ãŒãã³ã¹ã®è¿œè·¡
ãã¬ãŒãã³ã°äžãåãšããã¯ã§ã®æå€±çãèšæž¬ããŠèšé²ããŸãã
å¹³åæå€±ã®è¿œè·¡ã¯ãã¢ãã«ãã©ãã ã广çã«åŠç¿ããŠãããã®ææšã§ãã
åŠç¿çã®èª¿æŽã¯ããã®ããã»ã¹ã®éèŠãªéšåã§ãç¹å®ã®ãšããã¯åŸã«èªåçã«æžå°ãããããšã§ã¢ãã«ã®åæãæ¹åããŸãã
è©äŸ¡ææšã®äœ¿çš
粟床ã»ãªã³ãŒã«ã»F1ã¹ã³ã¢ãªã©ã®è©äŸ¡ææšãçšããŠãã¢ãã«ã®æ§èœã宿çã«è©äŸ¡ããŸãã
è©äŸ¡ææšã䜿ãããšã§ãã¢ãã«ãéåŠç¿ãæªåŠç¿ã§ãªããã倿ãã調æŽãå¿ èŠãã©ããã®å€æãå¯èœã§ãã
ãªã¢ã«ã¿ã€ã ã®ãã£ãŒãããã¯
宿éã§ã®ãã£ãŒãããã¯ãéããŠãã¢ãã«ã®äºæž¬ç²ŸåºŠãç£èŠããŠäºæž¬ãšå®éã®å€ãšã®èª€å·®ãè©äŸ¡ããŸãã
ããã¯ãã¢ãã«ãæ°ããããŒã¿ã«å¯ŸããŠã©ãã ãããŸãé©å¿ããŠããããçè§£ããã®ã«åœ¹ç«ã¡ãŸãã
ããŒã¿ã®å€åã®ç£èŠ
ããŒã¿ã®ç¹æ§ãæéãšãšãã«ããªããïŒå€åïŒããå¯èœæ§ãããããç£èŠããã¢ãã«ãæ°ããããŒã¿ã®ãã¿ãŒã³ã«å¯Ÿå¿ã§ããããã«ããŸãã
ããŒã¿ã®å€åãã¢ãã«ã®ããªãããæ€åºããããã«ãçµ±èšçãã¹ããããžã¥ã¢ã«åæãè¡ãããŸãã
ã¢ãã«ã®æŽæ°ãšåãã¬ãŒãã³ã°
ã¢ãã«ã®æ§èœãç®æšåºæºãæºãããªãå ŽåãããŒã¿ã®å€åã«ããæ§èœãäœäžããå Žåã¯ãã¢ãã«ãåãã¬ãŒãã³ã°ããå¿ èŠããããŸãã
ããã«ã¯ãæ°ããããŒã¿ãçšããŠã¢ãã«ãååŠç¿ïŒåãã¡ã€ã³ãã¥ãŒãã³ã°ïŒãããããšãå«ãŸããŸãã
LLMãã¡ã€ã³ãã¥ãŒãã³ã°ã®æŽ»çšäŸ5éž
LLMïŒå€§èŠæš¡èšèªã¢ãã«ïŒãã¡ã€ã³ãã¥ãŒãã³ã°ã®å¿çšã¯å€å²ã«ããããŸãã
ããã§ãç¹ã«æ³šç®ãã¹ã5ã€ã®å ·äœäŸãæããããããã®æŽ»çšæ³ã詳ãã解説ããŸãã
ã«ã¹ã¿ããŒãµããŒããã£ããããã
ãã¡ã€ã³ãã¥ãŒãã³ã°ãæœããLLMã¯ã顧客ããã®åãåããã«å¯ŸããŠãã粟床ã®é«ãè¿çããããã£ããããããæäŸããŸãã
ç¹ã«äŒæ¥åºæã®FAQãåãåããå±¥æŽãåŠç¿ãããããšã§ãåå¥åãããæ£ç¢ºãªåçãæäŸãããªã©ã®é¡§å®¢ã®ããŒãºã«åãããã«ã¹ã¿ãã€ãºãå¯èœã§ãâã
åãåããã®å 容ã«åºã¥ããæé©ãªå¿çã解決çãèªåçã«ææ¡ãã調æŽãå¯èœã§ãâã
æç« çæããŒã«
å°éçãªæäœãç¹å®ã®ãããã¯ã«å¯Ÿå¿ããæç« çæããŒã«ã¯ããã¡ã€ã³ãã¥ãŒãã³ã°ã«ãã£ãŠæ§ã ãªçšéã«ã«ã¹ã¿ãã€ãºããããšãå¯èœã§ãã
ç¹å®ã®ãžã£ã³ã«ããã©ãŒãããã®ãæ³åŸææžã»ãã¥ãŒã¹èšäºã»åŠè¡è«æããªã©ã®å 容ã«åãããææžãçæããããšãå¯èœã§ãã
ã³ã³ãã³ãã®å質ãšäžè²«æ§ãä¿ãããŠçç£æ§ã®åäžãèŠèŸŒãããããâæè¡ææžã»åµäœç©ãã¬ããŒãäœæã«ãå©çšãããŸãâã
ææ åæã·ã¹ãã
SNSãã¬ãã¥ãŒãµã€ããªã©ã®ãŠãŒã¶ãŒçæã³ã³ãã³ãããææ ãæèŠãåæããã·ã¹ãã ããLLMã®ãã¡ã€ã³ãã¥ãŒãã³ã°ãå©çšããŠç²ŸåºŠåäžãå¯èœã§ãã
é¡§å®¢ã®ææ ãåžå Žåååæã§ãã¬ã³ãããªã¢ã«ã¿ã€ã ã«ææ¡ããããšã§ãããŒã±ãã£ã³ã°æŠç¥ã補åéçºã«æŽ»ããããšãå¯èœãšãªããŸãã
ãã¡ã€ã³ãã¥ãŒãã³ã°ã¯ããããªã顧客æºè¶³åºŠã®åäžãå³ãç®çã§æŽ»çšãããŠããŸãã
å»çææžã®èªåèŠçŽ
å»çåéã§ã¯ãå°éçãªçšèªãããã»ã¹ãå€ã蚺æå ±åæžãæ²»çèšç»ãªã©ã®å°éææžã®å¹ççãªèŠçŽãå¿ èŠã§ãã
å»çåŸäºè ãè¿ éã«æ å ±ãææ¡ããŠæææ±ºå®ããµããŒãããããã«LLMã®ãã¡ã€ã³ãã¥ãŒãã³ã°ã掻çšãããŠããŸãã
å»çææžãç ç©¶ã¬ããŒãã®è³ªã®é«ãèŠçŽãèªååããããšã§ãæ£è ã±ã¢ã®è³ªãåäžããå»çåŸäºè ã®è² æ ã軜æžããããšã«åœ¹ç«ã£ãŠããŸãã
ããã°ã©ãã³ã°æ¯æŽããŒã«
ããã°ã©ãã³ã°ã³ãŒãã®èªåçæã»ãã°æ€åºã»ããã¥ã¡ã³ãçæãæ¯æŽããããŒã«ãããã¡ã€ã³ãã¥ãŒãã³ã°ãããLLMãçšããããšã§å¹ççã«å®çŸã§ããŸãã
LLMããã¡ã€ã³ãã¥ãŒãã³ã°ããããšã§ããœãããŠã§ã¢éçºã®é床ãšå質ãåäžãããéçºè ã®çç£æ§ãå€§å¹ ã«åäžãããããšãå¯èœã§ãã
ããã°ã©ãã³ã°æ¯æŽããŒã«ã®ç²ŸåºŠãäžããéçºè ãããåµé çãªäœæ¥ã«éäžã§ããããã«æŽ»çšãããŠããŸãâã
LLMãã¡ã€ã³ãã¥ãŒãã³ã°ã®ã³ã¹ãæé©åæ¹æ³
LLMãã¡ã€ã³ãã¥ãŒãã³ã°ãè¡ãéã«ã¯ãã³ã¹ãå¹çã®è¯ãæ¹æ³ãæ¡çšããããšãéèŠã§ãã
ããã§ã¯ãã³ã¹ããæé©åããããã®å ·äœçãªææ³ã玹ä»ããŸãã
ãã©ã¡ãŒã¿å¹ççãã¡ã€ã³ãã¥ãŒãã³ã°ïŒPEFTïŒã®æŽ»çš
QLoRAãLoRAã䜿çšããããšã§ãã¢ãã«å šäœãæŽæ°ããå¿ èŠããªããã¡ã¢ãªäœ¿çšéãæå€§80%åæžã§ããŸãã
16GBã®GPUã§70åãã©ã¡ãŒã¿ã¢ãã«ã®ãã¡ã€ã³ãã¥ãŒãã³ã°ãå¯èœãšãªãã髿§èœãªå°çšããŒããŠã§ã¢ã®å¿ èŠæ§ãå€§å¹ ã«è»œæžããŸãã
éååæè¡ã«ããã¡ã¢ãªæé©å
4bitéååãæŽ»çšããããšã§ãã¢ãã«ãµã€ãºãå€§å¹ ã«çž®å°ããªããæ§èœãç¶æã§ããŸãã
ãã®æè¡ã«ãããåŸæ¥ã®1/4ã®ã¡ã¢ãªã§ãã¡ã€ã³ãã¥ãŒãã³ã°ãå¯èœãšãªããã¯ã©ãŠãã³ã¹ããåçã«åæžã§ããŸãã
ã¢ãã«èžçã«ãã軜éå
å€§èŠæš¡ã¢ãã«ã®ç¥èãå°èŠæš¡ã¢ãã«ã«è»¢ç§»ããããšã§ãæšè«ã³ã¹ããåæžãã€ã€é«ãæ§èœãç¶æããŸãã
ãã®ææ³ã¯ç¹ã«æ¬çªç°å¢ã§ã®éçšã³ã¹ãåæžã«å¹æçã§ãã¬ã¹ãã³ã¹é床ã®åäžãåæã«å®çŸã§ããŸãã
ã¯ã©ãŠããªãœãŒã¹ã®å¹ççæŽ»çš
ã¹ãããã€ã³ã¹ã¿ã³ã¹ãããªãšã³ããã£ãã«ã€ã³ã¹ã¿ã³ã¹ã掻çšããããšã§ããã¬ãŒãã³ã°ã³ã¹ããæå€§90%åæžã§ããŸãã
ãŸãããªãŒãã¹ã±ãŒãªã³ã°æ©èœã䜿çšããŠãªãœãŒã¹ã®ç¡é§é£ãã鲿¢ããå¿ èŠãªæã«ã®ã¿èšç®è³æºã䜿çšããå¹ççãªéçšãå¯èœã§ãã
ãŸãšã
æ¬èšäºã§ã¯ãLLMïŒå€§èŠæš¡èšèªã¢ãã«ïŒã®ãã¡ã€ã³ãã¥ãŒãã³ã°ã«ã€ããŠè§£èª¬ããŸããã
ãã¡ã€ã³ãã¥ãŒãã³ã°ã¯ãäºååŠç¿æžã¿ã¢ãã«ãç¹å®ã®ã¿ã¹ã¯ããã¡ã€ã³ã«é©å¿ãããææ³ã§ãLLMã¢ãã«ã®ç²ŸåºŠãšåå¿é床ãåäžãããŸãã
LLMã«ã¯ã«ã¹ã¿ããŒãµããŒããæç« çæãææ åæã«ããããŒã±ãã£ã³ã°ãªã©å€ãã®å¿çšäŸãããããã¡ã€ã³ãã¥ãŒãã³ã°ã«ããæé©åãéèŠã§ãã
å®è¡ã«ã¯ãç°å¢èšå®ã»ã¢ãã«éžå®ãç®çã«å¿ããŠãã¡ã€ã³ãã¥ãŒãã³ã°æ¹æ³ãéžã³ãã¢ãã¿ãªã³ã°ãããªããæé©åããŸãã
æçµçã«ãLLMãã¡ã€ã³ãã¥ãŒãã³ã°ã¯æ¥åå¹çåãšç²ŸåºŠåäžãå®çŸããã³ã¹ãæé©åãšé«ãROIïŒæè³åççïŒãä¿é²ããŸãã